
Duality of upper bounds in stochastic dynamic

programming

Bernardo Freitas Paulo da Costa & Vincent Leclère

July 24, 2023

Abstract

For multistage stochastic programming problems with stagewise in-
dependent uncertainty, dynamic programming algorithms calculate poly-
hedral approximations for the value functions at each stage. The SDDP
algorithm provides piecewise linear lower bounds, in the spirit of the L-
shaped algorithm, and corresponding upper bounds took a longer time
to appear. One strategy uses the primal dynamic programming recur-
sion to build inner approximations of the value functions, while a second
one builds lower approximations for the conjugate of the value functions.
The resulting dynamic programming recursion for the conjugate value
functions do not decompose over scenarios, which suggests a Lagrangian
relaxation. We prove that this Lagrangian relaxation corresponds exactly
to the inner upper bounds for a natural choice of multipliers.

Contents

1 Introduction 2

2 Inner and outer approximations of the value functions 4
2.1 Outer updates and the SDDP algorithm 4
2.2 Primal inner approximation schemes 5
2.3 Algorithms using inner and outer bounds 7

3 Inner approximation through duality 8
3.1 Inner approximation through duality 8
3.2 Lagrangian relaxation of dual problem 9
3.3 Interpreting SIDP as a dual Lagrangian relaxation 10
3.4 Relatively complete recourse for the dual 11
3.5 State bounds and Lipschitz regularization 11

4 The risk-averse setting 12
4.1 The AV@R case . 13
4.2 Parametric risk measures . 14

5 Periodic setting 17
5.1 Lagrangian relaxation . 18

6 Conclusion 18

1

A Convex analysis 18
A.1 Properties of the Fenchel transform 19
A.2 Further conjugacy results . 19

B Linear Bellman operators 20
B.1 Abstract Linear Bellman operators 20
B.2 Expression of dual Bellman operators 22

1 Introduction

Multistage stochastic programming is a powerful framework that addresses
decision-making problems in complex and dynamic systems with evolving un-
certainties. With its ability to capture the dynamics of real-world systems and
handle evolving uncertainties, multistage stochastic programming offers valu-
able insights and strategies for a wide range of applications, including energy
management, financial portfolio optimization, and supply chain planning.

In this paper, we consider a linear multistage stochastic programming prob-
lem with recourse written as

min
x[T],y[T]

E
[T∑

t=1

c⊤t yt

]
(1a)

s.t. x0 = x0, (1b)

Atxt +Btxt−1 + T tyt = dt ∀t ∈ [T], (1c)

xt,yt ⪯ ξ[t], ∀t ∈ [T], (1d)

where [T] stands for {1, . . . , T}, and equality holds almost surely. We denote
by x[T], y[T], and ξ[T] the vectors (x1, . . . ,xT), (y1, . . . ,yT), and (ξ1, . . . , ξT),
respectively. Finally, xt ⪯ ξ[t] means that xt is measurable with respect to ξ[t],
and the same holds for yt.

In most cases, linear multistage stochastic programming problems have an
exponential complexity in the number of stages. That is why we assume that the
noises ξt := (ct,At,Bt,T t,dt) are independent exogeneous random variables,
opening the use of dynamic programming to solve the problem. More precisely,
we introduce a sequence of value functions Vt satisfying the following Bellman
recursion

VT+1 = 0, (2a)

V̇t(xt−1, ξt) = minxt,yt c⊤t yt + Vt+1(xt)

s.t. Atxt +Btxt−1 + Ttyt = dt,

(2b)

Vt(xt−1) = E
[
V̇t(xt−1, ξt)

]
, (2c)

and the value of Problem (1) is given by V1(x0).
In the past 30 years, numerous algorithms have been proposed to leverage the

Bellman recursion (2) to solve Problem (1), starting with the Stochastic Dual
Dynamic Programming (SDDP) algorithm [PP91]. This has lead to a variety
of Trajectory Following Dynamic Programming algorithms (see [FL23]) which
have been successfully applied to large-scale multistage stochastic programming
problems with various applications in the energy industry.

2

These algorithms leverage structural assumptions of the value functions Vt,
namely convexity for SDDP, to iterativaly refine outer approximations of the
value functions, and therefore obtain lower bounds. On the other hand, upper
approximations have been often estimated statistically, by simulating a policy
and averaging the resulting costs. Unfortunately, such statistical upper bounds
are not tractable in nested risk-averse problems, where the expectation in (2) is
replaced by a risk measure.

Recent works have offered alternative approaches to compute upper bounds,
either through a primal recursion [PdMF13, BDZ17, GTW19], or leveraging
duality [LCC+20, GSC23, dCL23]. The duality path consists in showing that
the dual value functions follow a Bellman recursion similar to (2), and use it to
determine outer approximations of the dual value functions:

Dt(π0) = inf
λ,π

E
[
λ⊤dt +Dt+1(π)

]
(3a)

s.t. E[B⊤
t λ] = π0 (3b)

πt +A⊤
t λ ≥ 0 (3c)

ct + T⊤
t λ ≥ 0 (3d)

Duality then turns these outer approximations into inner-approximation of the
primal value functions. This was first done in [LCC+20] for the risk neutral
setting, and then extended to risk-averse problems in [dCL23].

One of the main downsides of the dual approach is that the expectation
constraint (3b) links the decision taken at stage t for the various realizations of
ξt, contrary to the primal problem where the problems can be decoupled. Thus,
a natural idea is to use a Lagrangian relaxation of the coupling constraint. In
this paper, we explore the links between the inner approximations obtained
through a primal inner update, a dual outer update, and a Lagrangian relaxed
dual outer update.

More precisely, our contributions are as follows:

� We show that any Lagrangian relaxation of the dual recursion leads to
valid upperbounds;

� We relate the relaxed dual operator to the Bellman primal operator;

� In particular, by choosing the Lagrange multiplier as the right primal
points, we obtain the same upper bound as the primal inner approximation
scheme

� Thus, we show that the primal inner approximation scheme can be linked
to the Lagrangian relaxation of the dual outer approximation scheme.

� We extend the results to several variants of SDDP, including the risk-
averse and the periodic settings.

The paper is organized as follows: section 2 recalls the classical SDDP algo-
rithm, defining the Bellman operators and the update operators building outer
approximations with cuts. It then discusses how to use the primal Bellman re-
cursion to compute inner approximations of the value functions, and introduces
the corresponding update operator and some specific algorithms for iteratively
building inner approximations. section 3 discusses how to use duality to compute

3

upper bounds. Indeed, the dual SDDP algorithm consists in using a Bellman re-
cursion linking the conjugates of the value functions to run SDDP and get lower
bounds for the dual. Using duality once more, we get primal lower bounds. We
then discuss how Lagrangian relaxation decomposes the dual SDDP algorithm,
and enlighten the links between the upper bounds constructed using primal and
dual recursions. section 4 extends the results to the risk-averse setting, while
section 5 briefly discusses the periodic setting. Finally, section 6 concludes the
paper.

2 Inner and outer approximations of the value
functions

We tackle multistage problem of the form (1) through dynamic programming
methods computing inner and/or outer approximations. To do so, we first recall
the classical SDDP algorithm, and then show how to compute inner approxima-
tions using convexity of the value functions. Finally, we some algorithms that
maintain both an inner and outer approximations of the value functions.

2.1 Outer updates and the SDDP algorithm

As a motivation for our work, we recall the Stochastic Dual Dynamic Program-
ming (SDDP) algorithm [PP91].

First, we define, for each t ∈ [T], a Linear Bellman Operator (LBO) Bt
associated to a two-stage stochastic problem with recourse cost Q, where Q is
a proper polyhedral function1, by:

Bt(Q) : xt−1 7→ inf
xt,yt

E
[
c⊤t yt +Q(xt)

]
s.t. Atxt +Btxt−1 + T tyt = dt a.s.

xt,yt ≥ 0 a.s.

(4)

In particular, Equation (2) can be rewritten as

VT = 0, and Vt = Bt(Vt+1) ∀t ∈ [T]. (5)

Further, the primal Bellman operator Bt can be decomposed per realization

of the uncertainty ξt, i.e., Bt(Q)(xt−1) = E
[
Ḃ(Q)(xt−1, ξt)

]
for t ∈ [T], where

Ḃ(Q)(xt−1, ξt) is given as the optimal value of

min
xt,yt

c⊤t yt +Q(xt)

s.t. Atxt +Btxt−1 + Ttyt = dt
xt, yt ≥ 0.

(Ḃ(Q)(xt−1, ξt))

Note that solving the above linear problem, denoted (Ḃ(Q)(xt−1, ξt)), simul-
taneously returns the optimal out-state decision xt =: Ft(Q)(xt−1, ξt), the op-
timal value of the objective function v̇ = Bt(Q)(xt−1, ξ) and a subgradient
π̇ ∈ ∂xḂt(Q)(xt−1, ξ) of the cost-to-go function evaluated at xt−1.

1The polyhedrality assumption is not needed to define Bellman operators. Convexity is
required for exact linear cuts to be obtained through duality, and polyhedrality simplifies the
constraints qualifications requirements.

4

Algorithm 1: Vanilla SDDP

Data: maximum number of iterations N , lower bounds V t ≤ Vt
1 for k = 1 to N do
2 Set xk0 ← x0
3 for t = 1 to T − 1 do // forward pass

4 Randomly select ξ ∈ supp(ξt)

5 Solve (Ḃt(V
k
t+1)(x

k
t−1, ξ)) for x

k
t

6 Set V k+1
T+1 = 0

7 for t = T to 1 do // backward pass

8 for ξ ∈ supp(ξt) do

9 Solve (Ḃ(V k+1
t+1)(x

k
t−1, ξ)) for (v̇

k+1
t,ξ , π̇k+1

t,ξ)

10 Set vk+1
t =

∑
ξ∈supp(ξt)

P(ξt = ξ)v̇k+1
t,ξ

11 Set πk+1
t =

∑
ξ∈supp(ξt)

P(ξt = ξ)π̇k+1
t,ξ

12 Set V k+1
t = max

(
V k

t , v
k+1
t + (· − xk+1

t)⊤πk+1
t

)

With this in mind, iteration k of the vanilla SDDP algorithm 1, consists in a
forward pass where we compute the optimal out-state decision xkt for a sampled
realization ξkt of the uncertainty, and a backward pass where we compute the
optimal value of the objective function vkt and a subgradient πk

t of the cost-to-go
function evaluated at xt−1, for each stage t and realization ξ of the uncertainty
ξt. The backward phase thus updates an outer approximation of the cost-to-go
functions Vt. The following definition formalizes this outer update.

Definition 1. Let Qt and Qt+1 be proper polyhedral functions, and B be an
abstract linear Bellman operator. The outer update operator Uo is defined as

Uo(Qt, Qt+1,Bt;xt) := max
(
Qt , Bt(Qt+1)(xt) + π⊤

t (· − xt)
)

(6)

where πt is a subgradient of Bt(Qt+1) at xt.

With these outer updates, lines 8 to 12 of algorithm 1 can be rewritten as

V k+1
t = Uo(V k

t , V
k+1
t+1 ,Bt;xkt). (7)

Remark 2 (Outer bound validity and representation). Let t ∈ [T]. Note that,
if V t+1 ≤ Vt+1, then Bt(V t+1) ≤ Bt(Vt+1) = Vt, so that, if in addition V t ≤ Vt
then the updated bound is still valid, i.e., Uo(V t, V t+1,Bt;xt) ≤ Vt.

Further, if V t is given as a collection of cuts (i.e., an H-representation), then
Uo(V t, V t+1,Bt;xt) is also given as a collection of cuts.

2.2 Primal inner approximation schemes

As we have seen, the vanilla SDDP algorithm relies on iteratively refining outer
approximations of the value functions Vt based on the convexity of Vt. Still using
convexity of Vt, we can also iteratively refine inner approximations of the value

5

Algorithm 2: IDP

Data: maximum number of iterations N , upperbounds V t ≤ Vt
1 for k = 1 to N do
2 Set xk0 ← x0
3 for t = 1 to T − 1 do // forward pass

4 Compute a trial point xkt

5 Set V
k+1

T+1 = 0
6 for t = T to 1 do // backward pass

7 for ξ ∈ supp(ξt) do

8 Solve (Ḃ(V
k+1

t+1)(x
k
t−1, ξ)) for v̇

k+1
t,ξ

9 Set vk+1
t =

∑
ξ∈supp(ξt)

P(ξt = ξ)v̇
k+1
t,ξ

10 Set V
k+1

t : x 7→ min
α∈∆k

{ k+1∑
κ=1

ακv
κ
t

∣∣∣∣ k+1∑
κ=1

ακx
κ
t = x

}
where ∆k is

the k-dimensional simplex

functions Vt, as presented in algorithm 2, where the trial point computation is
not specified.

To efficiently express the backward pass of algorithm 2, we introduce the
following operator for functions f, g : Rn → R ∪ {+∞}:

f▼g : x 7→ inf
λ,y,z

λf(y) + (1− λ)g(z) (8a)

s.t. λ ∈ [0, 1] (8b)

λy + (1− λ)z = x. (8c)

In terms of epigraphs, we have epi(f▼g) = Conv(epi(f)∪ epi(g)). In particular,
f▼g is convex and lower-semicontinuous. With this, we define the following
inner update operator:

Definition 3. Let Qt and Qt+1 be proper polyhedral functions, and B be an
abstract linear Bellman operator. The inner update operator Ui is defined as

Ui(Qt, Qt+1,B;xt) := Qt▼pinxt,B(Qt+1)(xt) (9)

where

pinx̌,h : x 7→
{
h if x = x̌
+∞ otherwise.

(10)

With this operator, lines 7 to 10 of algorithm 2 can be rewritten as

V
k+1

t = Ui(V
k

t , V
k+1

t+1 ,Bt;xkt). (11)

Remark 4. Let t ∈ [T]. Note that, if V t+1 ≥ Vt+1, then Bt(V t+1) ≥ Bt(Vt+1) =
Vt, so that, if in addition V t ≥ Vt then the updated bound is still valid,
i.e., Ui(V t, V t+1,Bt;xt) ≥ Vt.

Further, if V t is given as the convex envelope of a minimum of pin func-
tions(i.e., a V -representation), then Ui(V t, V t+1,Bt;xt) is also given as a col-
lection of pins.

6

Remark 5. The name “pin” combines the fact that the function pinx,h “pins”
the function Vt to be at most h at x, and also because its epigraph is a half-line
going upwards from (x, h).

2.3 Algorithms using inner and outer bounds

In algorithm 2, the trial point selection is not specified.
To our knowledge, the first IDP algorithm2 of this kind can be found in [PdMF13],

where the authors propose to use as trial points the trajectories obtained dur-
ing a standard SDDP procedure (see algorithm 1). More precisely, they run a
standard SDDP procedure, keep the trajectories of the forward pass, and use
them as trial points in a single backward pass of algorithm 2.

Some papers (like [BDZ17] and [GTW19] for the robust setting) have pro-
posed to consider the possible out-state xkt,ξ, of a standard SDDP procedure
and select the problem-child, that is the one maximizing the gap between the
current upper and lower bounds, resulting in algorithm 3

Algorithm 3: RDDP

Data: maximum number of iterations N , upperbounds V t ≤ Vt
1 for k = 1 to N do
2 Set xk0 ← x0
3 for t = 1 to T − 1 do // forward pass

4 for ξ ∈ supp(ξt) do

5 Solve (Ḃ(V k
t+1)(x

k
t−1, ξ)) for x

k
t,ξ

6 Set xkt such that

(V
k

t+1 − V
k
t+1)(x

k
t) = max

ξ∈supp(ξt)
(V

k

t+1 − V
k
t+1)(x

k
t,ξ)

7 Set V k+1
T+1 = V

k+1

T+1 = 0

8 for t = T to 1 do // backward pass

9 V k+1
t = Uo(V k

t , V
k+1
t+1 ,Bt;xkt)

10 V
k+1

t = Ui(V
k

t , V
k+1

t+1 ,Bt;xkt)

Note that the use of the outer approximation in the forward pass of algo-
rithm 3 is mandatory to ensure convergence. Using the inner approximation in
the forward pass would not allow to explore enough the state space to ensure
convergence.

The problem-child node-selection procedure has very good theoretical prop-
erties, and sometimes good numerical properties as well. However, it is also
natural to consider a stochastic version of this algorithm, that we call Stochas-
tic Inner Dynamic Programming (SIDP), where the node-selection is done ran-
domly, as described in algorithm 4.

2Actually a straigthforward extension were we compute more than one trial point per stage
in the forward phase.

7

Algorithm 4: SIDP

Data: maximum number of iterations N , upperbounds V t ≤ Vt
1 for k = 1 to N do
2 Set xk0 ← x0
3 for t = 1 to T − 1 do // forward pass

4 Randomly select ξ ∈ supp(ξt)

5 Solve (Ḃ(V k
t+1)(x

k
t−1, ξ)) for x

k
t,ξ

6 Set V k+1
T+1 = V

k+1

T+1 = 0

7 for t = T to 1 do // backward pass

8 V k+1
t = Uo(V k

t , V
k+1
t+1 ,Bt;xkt)

9 V
k+1

t = Ui(V
k

t , V
k+1

t+1 ,Bt;xkt)

3 Inner approximation through duality

In this section, we aim at obtaining inner approximations through duality. First,
we recall that Fenchel duality can be used to obtain inner approximations, to
the price of non-decomposable stage-problems. Lagrangian relaxation is then
a natural way to decompose it, and we end by showing that a Lagrangian
decomposition with well-chosen multipliers yields the same inner approximation
as the primal inner approximation scheme of algorithm algorithm 4.

3.1 Inner approximation through duality

It has been shown in [LCC+20] that, for any proper polyhedral function V , we
have

[B(V)]
⋆
= B‡(V ⋆) (12)

where, for any polyhedral function D we define

B‡(D) : π0 7→ inf
λ,π

E
[
λ⊤d+D(π)

]
(13a)

s.t. E[B⊤λ] = π0 (13b)

π +A⊤λ ≥ 0 (13c)

c+ T⊤λ ≥ 0 (13d)

which is another LBO, which we denote B‡, corresponding to a two-stage stochas-
tic optimization problem with an expectation constraint. For the sake of com-
pleteness, we recall the proof of (12) in §B.2.

We can then apply the SDDP algorithm to (13), to obtain an outer approxi-
mation of [Vt]

⋆
, which we denote U t. This is presented in algorithm 5, although

we are dropping some technicalities3 to clarify the discussion.
The functions Uk

t obtained are lower bounds to V ⋆
t . And, by polyhedrality

of Vt, taking again the Fenchel transform shows that Vt ≤
[
Uk
t

]⋆
.

3Like initialisation of the dual state, the final value function, and compactification proce-
dure required for SDDP to work.

8

Algorithm 5: Dual SDDP

Data: maximum number of iterations N , lowerbounds U t ≤ Ut

1 for k = 1 to N do
2 for t = 1 to T − 1 do // forward pass

3 Randomly select ξ ∈ supp(ξt)

4 Solve (B‡
t(U

k
t+1)(π

k
t−1) for (π

k
t,ξ)ξ∈Ξt

5 Set πk
t = πk

t,ξ

6 for t = T to 1 do // backward pass

7 Uk+1
t = Uo(Uk

t , U
k+1
t+1 ,B

‡
t ;π

k
t).

Note that, contrary to algorithm 1, the forward pass requires to solve the
stage-problem (13) coupled by the expectation constraint (13b). We discuss
next how to decouple the problem via Lagrangian relaxation.

3.2 Lagrangian relaxation of dual problem

The primal problem defined in (4) can be decomposed in scenarios. On the other
hand, the problem that arises through the dual Bellman operator B‡ in (13)
has a linking constraint E[B⊤λ] = π0. It is natural to look for a Lagrangian
relaxation of this constraint in order to obtain smaller problems. The Lagrange
multiplier we choose for the linking constraint will be denoted by x̂, so we define:

Definition 6 (Relaxed version of dual Bellman operator). For any (convex)
function D, we set

B

†

(D; x̂)(π0) := inf
λ,π

E
[
λ⊤d+D(π)

]
+ x̂⊤

(
π0 − E[B⊤λ]

)
s.t. π +A⊤λ ≥ 0

c+ T⊤λ ≥ 0

(14)

It will be convenient to fix x̂ and consider the induced operator D 7→ B

†

(D; x̂)

over functions, which we denote by B

†

x̂.

Observe that, for each x̂, the function B

†

x̂(D) in an affine function of π0.

Since problem (14) is a Lagrangian relaxation, we have B

†

(D; x̂)(π0) ≤
B‡(D)(π0). Therefore, we can use B

†

x̂ instead of B‡ to perform outer (lower)
updates, analogous to SDDP (Algorithm 1) and the Dual-SDDP:

Definition 7 (Relaxed dual update). Given two functions U t and U t+1, a state
πt and a Lagrange multiplier x̂, the relaxed dual update for the function U t is

just using B

†

x̂ instead of B‡ in the outer update:

Uo(U t, U t+1,B

†

x̂;πt).

With this in place, we derive a relation between inner and outer updates,
respectively in the primal and dual problems:

Theorem 8. Let F and G be closed, proper, convex functions, and B a linear
Bellman operator. Then, for all x̂ we have

[Ui(F,G,B; x̂)]⋆ = Uo(F ⋆, G⋆,B

†

x̂;π0) ∀π0.

9

Proof. The inner update yields F▼ pinx̂,B(G)(x̂), where pinx̂,B(G)(x̂) is the pin
function Ix̂ + B(G)(x̂), while the outer update yields max(F ⋆, ψ), where ψ is

the cut corresponding to B

†

x̂(G
⋆) at π0. Actually, ψ = B

†

x̂(G
⋆), since the latter

is an affine function, so the cut does not depend on the trial point π0. By the
conjugacy of max and ▼ (see proposition 17 in the appendix), it is enough to

show that ψ =
[
pinx̂,B(G)(x̂)

]⋆
.

By strong duality (see proposition 19 in the appendix), the intercept of

the affine function B

†

x̂(G
⋆) is precisely −B(G)(x̂). This, and the fact that the

linear coefficient of B

†

x̂(G
⋆) is x̂, shows that ψ is indeed the Fenchel conjugate

of pinx̂,B(G)(x̂).

3.3 Interpreting SIDP as a dual Lagrangian relaxation

In the inner approximation scheme of SIDP (Algorithm 4), one maintains a

sequence of upper bounds V
k

t for each value function Vt, each one given by a
finite collection of points (zt,i, vt,i), such that V (zt,i) ≤ vt,i.

For the dual problem, we have an outer approximation scheme, where each
value function [Vt]

⋆
is bounded below by Uk

t . Now, suppose that these bounds
are conjugate to each other: [

V
k

t

]⋆
= Uk

t ,

which is natural since an upper bound gets transformed to a lower bound via
Fenchel conjugacy. We have:

Proposition 9 (Conjugacy-preserving update). Under the hypothesis that
[
V

k

t

]⋆
=

Uk
t for all t, performing an update of the inner approximation V

k

t using the pri-
mal problem evaluated at x̂t−1 corresponds to performing an update of the outer
approximation Uk

t via the dual problem relaxed with x̂t−1, in the sense that[
V

k+1

t

]⋆
= Uk+1

t .

Algorithmically, adding one vertex to the inner approximation of the primal
value function through primal Bellman operator is equivalent to adding one cut
to outer approximation of the dual value function with the relaxed dual Bellman
operator, where the Lagrange multiplier is chosen as the evaluation point in the
primal.

Proof. The first part is an application of theorem 8 on the conjugate of the
primal update. If one makes a “forward” update of the value functions in

both problems, this follows from V
k+1

t = Ui(V
k

t , V
k

t+1,B; x̂t−1) and Uk+1
t =

Uo(Uk
t , U

k
t+1,B

†

x̂;π0). If, on the other hand, one performs a “backward” update,

then we have V
k+1

t = Ui(V
k

t , V
k+1

t+1 ,B; x̂t−1) and Uk+1
t = Uo(Uk

t , U
k+1
t+1 ,B

†

x̂;π0),
and the result follows from backwards induction on t.

The second part results from the conjugacy between cuts and vertices (see corol-
lary 18 in the appendix).

Applying this result through all iterations of the primal algorithm with outer
and inner approximations, on the one hand, and the combined primal-dual
algorithm with relaxed dual updates, we obtain

10

Theorem 10. If the starting outer approximations U0
t for [Vt]

⋆
are conjugate

to V
0

t , the inner approximations of Vt, and if at every iteration of the primal-
dual algorithm the update of the dual bounding functions is performed via a
relaxation at the point where the inner-outer algorithm adds a vertex to the
inner approximation, then Uk

t =
[
V k
t

]⋆
for all iterations.

In particular, the upper bounds obtained via the primal-relaxed dual method
are the same as those from the inner-outer primal method.

3.4 Relatively complete recourse for the dual

The dual problem from eq. (13) may lack relatively complete recourse. One
possible way of addressing this is to consider that the original primal problem
has explicit bounds on the decision variables. This is a natural assumption for
the state variables x, since SDDP usually needs bounded states for the forward
steps to be well-defined; as for the y variables, such bounds can be often derived
from knowledge of the support of the uncertainty.

With these bounds, the primal recursion becomes

Bt(Q) : xt−1 7→ inf
xt,yt

E
[
c⊤t yt +Q(xt)

]
s.t. Atxt +Btxt−1 + T tyt = dt a.s.

0 ≤ xt ≤ xt a.s.
0 ≤ yt ≤ yt a.s.

(15)

and the corresponding dual recursion will be

B‡(D) : π0 7→ inf
λ,π,ζx,ζy

E
[
λ⊤d+ x⊤t ζx + y⊤t ζy +D(π)

]
s.t. E[B⊤λ] = π0

ζx + π +A⊤λ ≥ 0

ζy + c+ T⊤λ ≥ 0

(16)

This problem has relatively complete recourse as soon as B⊤ has full range,
which is the same as saying that Vt(x) is not constant along a direction, which
is reasonable to assume.

3.5 State bounds and Lipschitz regularization

As mentionned above, it is often important that the state variables remain
bounded along the iterations of the algorithm. In the dual, this is achieved
by adding a box constraint on the Lagrange multipliers π to the formulation
in eq. (16).

For the primal inner approximation scheme, one also needs to ensure that
the inner approximations are defined everywhere. Indeed, given a trial point x̂

and an approximation V
k
, it could happen that the dynamic constraint defining

the next state z leads to a point outside the domain of V
k
. This could be the

case, for example, for the first iteration of the algorithm, when V
0
is just defined

at a single point. Therefore, one can add a regularization term to the Bellman
operator, which will ensure that the resulting function is defined everywhere.
A natural choice is to add a Lipschitz regularization term, so that one actually

evaluates B(V k
□ L · n), where L is the Lipschitz constant, and n(x) = ∥x∥1.

11

Now, since the conjugate of the infimal convolution is the pointwise sum of
the conjugates, we have[

B(V k
□ L · n)

]⋆
= B‡

([
V

k
]⋆

+ [L · n]⋆
)
. (17)

The conjugate of the Lipschitz regularization term is the indicator function of
the set {π | ∥π∥∞ ≤ L}, and therefore corresponds to adding a box constraint
to the dual problem. This is precisely the regularization needed in the dual
problem, to ensure that the dual state variables π remain bounded along the
iterations of the algorithm.

4 The risk-averse setting

In this section, we show an analogous result for the recursion of coperspective
functions introduced in [dCL23]. The formulation of the risk measure in that
paper is

ρ(Z) := sup
q∈Q

Eq[Z], (18)

where Q is a polyhedral set of probability measures, and the corresponding
risk-averse Bellman operator B(V) is

B(V)(x0) = inf
x,y

ρ
[
c⊤y + V (x)

]
s.t. Ax+Bx0 + Ty = d

x,y ≥ 0.

(19)

Defining the coperspective of a function f as the perspective of its Fenchel con-
jugate, which, for γ0 > 0 is given by:

f⊠(π0, γ0) := sup
x0

π⊤
0 x0 − γ0f(x0),

we obtain a relation analogous to the one in (12):

[B(V)]
⊠
= B⊠(V ⊠),

where the corresponding coperspective Bellman operator B⊠ is:

B⊠(D)(π0, γ0) = inf
λ,π

E
[
λ⊤d+D(π,γ)

]
s.t. E[B⊤λ] = π0

γ ∈ γ0Q
π +A⊤λ ≥ 0

γc+ T⊤λ ≥ 0.

(20)

The dual recursion induced by (20) presents both incoming states π0 and γ0
in linking constraints. The expectation constraint corresponding to π0 can be
relaxed with a primal trajectory x̂, as in the risk-neutral case. It remains to show
how to relax the constraint corresponding to γ0 with a primal parameter, and
that these choices lead to a similar conjugacy result for primal inner updates.

12

4.1 The AV@R case

We illustrate our approach first with the AV@R case. One advantage of using
AV@R is the Rockafellar-Uryashev representation

ρα(Z) := inf
θ

{
θ +

1

1− α
E [(Z − θ)+]

}
. (21)

Thus, the dynamic programming equation in the AV@R case becomes:

B(V)(x0) = inf
x,y;θ,u,z

θ + 1
1−αE[u]

s.t. θ + u ≥ z [δ]

z ≥ c⊤y + V (x) [γ]

Ax+Bx0 + Ty = d [λ]

x,y,u ≥ 0 [µ,ν,η] ,

(22)

where we indicate Lagrange multipliers for each constraint. Since all decision
variables are random vectors, except for the parameter θ, we use the expectation
inner product to derive the Lagrangian:

θ +
1

1− α
E[u] + E[δ(z − θ − u) + γ(c⊤y + V (x)− z)]

+ E[λ⊤(Ax+Bxt−1 + Ty − d)]− E[µ⊤x+ ν⊤y + ηu].

Eliminating the multipliers ν and η, we obtain, as there is no duality gap, the
dual formulation of B(V)(x0):

B(V)(x0) = sup
λ,γ,δ,µ

E
[
λ⊤(Bx0 − d)− V ⊠(µ−A⊤λ;γ)

]
s.t. E[δ] = 1 [θ]

δ ≤ 1
1−α [u]

γ = δ [z]

γc+ T⊤λ ≥ 0 [y]
µ, δ,γ ≥ 0

(23)

where we replace inf
x
(A⊤λ− µ)⊤x+ γV (x) by −V ⊠(µ−A⊤λ;γ).

For the coperspective calculation, we will need to evaluate γ0B(V)(x0).
Pushing the multiplier γ0 inside the objective function, we obtain

γ0B(V)(x0) = sup
λ,γ,δ,µ

E
[
γ0λ

⊤(Bx0 − d)− γ0V ⊠(µ−A⊤λ;γ)
]

s.t. E[δ] = 1
δ ≤ 1

1−α

γ = δ

γc+ T⊤λ ≥ 0
µ, δ,γ ≥ 0

(24)

= sup
λ̃,γ̃,δ̃,µ̃

E
[
λ̃
⊤
(Bx0 − d)− V ⊠(µ̃−A⊤λ̃; γ̃)

]
s.t. E[δ̃] = γ0

δ̃ ≤ γ0

1−α

γ̃ = δ̃

γ̃c+ T⊤λ̃ ≥ 0

µ̃, δ̃, γ̃ ≥ 0

(25)

13

where we multiply every decision variable by γ0, so that λ̃ = γ0λ, . . . , and use
the fact that V ⊠ is positively homogeneous.

Now, we can derive the coperspective of B(V), using once again strong du-
ality to interchange inf and sup:

[B(V)]
⊠
(π0, γ0) = sup

x0

π⊤
0 x0 − γ0B(V)(x0) (26)

= supx0
π⊤
0 x0 + inf

λ,γ,δ,µ
E
[
−λ⊤(Bx0 − d) + V ⊠(µ−A⊤λ;γ)

]
s.t. E[δ] = γ0

0 ≤ δ ≤ γ0

1−α

γ = δ

γc+ T⊤λ ≥ 0
µ ≥ 0

(27)

= inf
λ,γ,δ,µ

E
[
λ⊤d+ V ⊠(µ−A⊤λ;γ)

]
s.t. E[B⊤λ] = π0

E[δ] = γ0
δ ≤ γ0

1−α

γ = δ

γc+ T⊤λ ≥ 0
µ,γ, δ ≥ 0

(28)

Note that, besides the constraint E
[
B⊤λ

]
= π0, the optimization problem

corresponding to the coperspective Bellman operator contains a further expec-
tation constraint: E[δ] = γ0. In the same way as it was natural to relax the
dual state constraint with a primal trajectory, we again notice that this con-
straint has a natural multiplier given by the primal parameter θ. The value of
θ can be evaluated by decomposition, since the primal problem can be solved
independently for each realization of ξt, and then the corresponding θ can be
calculated using the optimal costs-to-go z in (21).

Also, notice that the expectation constraint E[δ] = γ0 is only a part of the
constraint γ ∈ γ0Q: indeed, the latter also includes the constraints 0 ≤ δ ≤
γ0

1−α and the (trivial) constraint γ = δ. However, one only needs to relax the
expectation constraint in order to obtain a scenario decomposition for the dual
problem.

We won’t prove the conjugacy of primal inner and relaxed dual outer updates
for the AV@R risk measure here. Instead, we will provide a more general risk-
averse setting in the next section, which we will use to derive a general conjugacy
result.

4.2 Parametric risk measures

We consider the case where the risk measure ρ(Z) is given by

ρ(Z) := inf
θ∈Θ

E [Ψ(Z; θ)] ,

for a fixed underlying probability, Ψ an homogeneous convex function of (z, θ),
and Θ a convex cone. We also assume that Ψ is chosen so that the resulting

14

risk measure ρ becomes translation-invariant. With these hypothesis, such a
risk measure is coherent (convex, positively homogeneous).

From now on, we assume that ρ is well-defined for Z ∈ Lp, with 1 ≤ p <∞,
so that the dual space is Lq for 1/p+ 1/q = 1

Proposition 11. For such risk measures ρ, we have:

1. ρ(Z) = supq∈Q E[q · Z], where Q = ∂ρ(0);

2. supZ,θ∈Θ E[γ · Z −Ψ(Z; θ)] = IQ(γ) for γ ∈ Lq.

Proof. The first result follows from homogeneity of ρ.
The second follows from the subdifferential characterization of the risk-set.

Optimizing over θ yields:

sup
Z,θ∈Θ

E[γ · Z −Ψ(Z; θ)] = sup
Z

E[γ · Z]− ρ(Z) = ρ⋆(γ) (29)

If γ ∈ Q, then ρ(Z) ≥ E[γ · Z] for all Z (ρ(0) = 0 by homogeneity), so the
supremum is attained at Z = 0. Otherwise, there exists Z such that ρ(Z) <
E[γ · Z]; by homogeneity of ρ, this difference can be made arbitrarily large by
scaling Z.

In this setting, proceeding analogouly to the AV@R case, the dual problem
of

B(V)(x0) = inf
x,y

ρ
[
c⊤y + V (x)

]
s.t. Ax+Bx0 + Ty = d

x,y ≥ 0

(30)

= inf
x,y;θ,z

E [Ψ(z; θ)]

s.t. z ≥ c⊤y + V (x)

Ax+Bx0 + Ty = d

x,y ≥ 0

(31)

is given by

B(V)(x0) = sup
γ,λ,µ

E
[
λ⊤(Bx0 − d)− V ⊠(µ− λ⊤A,γ)

]
+ inf

z,θ∈Θ
E [Ψ(z, θ)− γ · z]

s.t. γc+ T⊤λ ≥ 0
µ,γ ≥ 0

(32)

= sup
γ,λ,µ

E
[
λ⊤(Bx0 − d)− V ⊠(µ− λ⊤A,γ)

]
s.t. γ ∈ Q

γc+ T⊤λ ≥ 0
µ,γ ≥ 0

(33)

using Proposition 11. We can still apply strong duality if the problem is feasible,
and mild regularity conditions on the risk generating function Ψ because then
the remaining nonlinear constraint can be made strict increasing z.

15

Therefore, the coperspective Bellman operator is

B⊠(D)(π0, γ0) = inf
λ,π,γ

E
[
λ⊤d+D(π,γ)

]
s.t. E[B⊤λ] = π0

γ ∈ γ0Q
π +A⊤λ ≥ 0

γc+ T⊤λ ≥ 0

(34)

= inf
λ,π,γ

E
[
λ⊤d+D(π,γ)

]
+supz,θ∈Θ E [γ · z − γ0Ψ(z, θ)]

s.t. E[B⊤λ] = π0
π +A⊤λ ≥ 0

γc+ T⊤λ ≥ 0

(35)

Analogous to the case of AV@R, we again have a primal parameter θ which
can be used to relax the coupling constraint γ ∈ γ0Q, using the formulation
in eq. (35). Also performing the Lagrangian relaxation of the expectation con-
straint E[B⊤λ] = π0, we obtain a decomposable dual problem:

B⊠
x̂,θ̂

(D)(π0, γ0) = inf
λ,π,γ

E
[
λ⊤d+D(π,γ)

]
+ x̂⊤(π0 − E[B⊤λ])

+ supz E
[
γ · z − γ0Ψ(z, θ̂)

]
s.t. π +A⊤λ ≥ 0

γc+ T⊤λ ≥ 0.

(36)

Again, it is easy to see that the function defined above is affine in π0. If D is
homogeneous in (π, γ), as it would be the case when D = V ⊠, then the func-
tion is also affine in γ0, and B⊠x̂,θ̂ maps homogeneous functions to homogeneous

functions.
To complete the link between primal and dual recursions, we only need to

show that the coefficient of γ0 is indeed −B(V)(x̂), if θ̂ is chosen appropriately.
Indeed:

Theorem 12. Let V be a proper polyhedral function, and ρ a Ψ-generated risk
measure. Let t = Ḃ(V)(x̂, ξ) be the optimal cost in each scenario ξ of the primal

problem, and let θ̂ ∈ argminθ∈Θ E [Ψ(t, θ)]. Then

B⊠
x̂,θ̂

(V ⊠)(π0, γ0) = x̂⊤π0 − γ0B(V)(x̂). (37)

Proof. From the discussion above, we only need to show that

inf
λ,π,γ

E
[
λ⊤d+ V ⊠(π,γ)

]
− x̂⊤E[B⊤λ]

+ supz E
[
γ · z −Ψ(z, θ̂)

]
s.t. π +A⊤λ ≥ 0

γc+ T⊤λ ≥ 0.

= −ρ
[
Ḃ(V)(x̂, ξ)

]
(38)

where we set γ0 to one. We again introduce the multipliers x and y, interchange
inf and sup by strong duality, and obtain that the left-hand side is equal to

sup
x,y≥0

inf
π,γ

E
[
−γc⊤y − π⊤x+ V ⊠(π,γ) + supz E

[
γ · z −Ψ(z, θ̂)

]]
s.t. Ax+Bx̂+ Ty = d,

(39)

16

where we already eliminated the multiplier λ. Starting with the infimum over
π, we get

inf
π

[
−π⊤x+ V ⊠(π,γ)

]
= −γV (x),

and we now interchange infγ and supz:

sup
z

inf
γ

[
−γc⊤y − γV (x) + γ · z −Ψ(z, θ̂)

]
= supz −Ψ(z, θ̂)

s.t. z = c⊤y + V (x)

Substituting back in (39), we obtain

sup
x,y≥0

sup
z

E
[
−Ψ(z, θ̂)

]
s.t. z = c⊤y + V (x)

Ax+Bx̂+ Ty = d

(40)

which, upon interchanging the minus sign with the supremum, yields precisely
the right-hand side of (37), since θ̂ realizes the risk measure ρ.

5 Periodic setting

Another important setting in dynamic programming, going back to MDPs, is
the periodic setting for infinite-horizon problems with discount factor β over
each time step. For simplicity, we deal with the time-invariant (1-periodic)
case, where the matrices A, B, T , and vectors c and d have the same distri-
bution at every stage. Thus, we drop the time indices for these quantities, and
the Bellman operator (41) is also time-invariant. Then an infinite, 1-periodic
Bellman recursion

Qt(xt−1) = B(Qt+1)(xt−1) = inf
xt,yt

E
[
c⊤yt + βQt+1(xt)

]
s.t. Axt +Bxt−1 + Tyt = d

xt,yt ≥ 0

(41)

becomes a fixed-point problem:

Qt = B(Qt+1) = Qt+1. (42)

By Fenchel conjugacy, we deduce a dual Bellman recursion, which is only
slightly different from the one we obtained from the finite-horizon one since it
now includes the discount factor β:

Dt(πt−1) = B‡(Dt+1)(πt−1) = sup
πt,λt

E
[
d⊤λt + βDt+1(πt)

]
s.t. E[B⊤λt] = πt−1

βπt +A⊤λt ≥ 0

c+ T⊤λt ≥ 0.

(43)

Notice that, besides discounting the value function Dt+1, the dual Bellman
recursion (43) also includes the discount factor β in one of the constraints. This
also leads to a fixed-point equation:

Dt = B‡(Dt+1) = Dt+1. (44)

17

5.1 Lagrangian relaxation

Now, we can define the relaxed Bellman operator:

B

†

(D; x̂)(π0) = inf
λ,π

E
[
λ⊤d+D(π)

]
+ x̂⊤

(
π0 − E[B⊤λ]

)
s.t. βπ +A⊤λ ≥ 0

c+ T⊤λ ≥ 0

(45)

which, as in the finite-horizon case, is a Lagrangian relaxation of the dual Bell-
man operator, and an affine function of π0. Proceeding analogously to the
finite-horizon case, we have:

B

†

(V ⋆; x̂)(π0) = x̂⊤π0 − βB(V ; x̂), (46)

for proper polyhedral functions V .
This shows that, in the same way as in the finite-horizon case, the cuts used

in the relaxed dual updates are conjugate to the “pin functions” of primal inner
updates. Therefore, the upper bounds constructed from either method are the
same, provided they start from conjugate initial conditions and the relaxation
x̂ for the dual update is the trial point where the pin function will be evaluated
in the primal update.

6 Conclusion

We have reviewed two different approaches for calculating deterministic upper
bounds for multistage stochastic problems. The first one consists on applying
the dynamic programming recursion on upper bounds of the value functions,
producing a sequence of inner approximations. The second one builds, by con-
vex duality, a dynamic programming recursion for the conjugates of the value
functions, and deduces the upper bounds from outer approximations. The op-
timization problems in the dual approach have a coupling constraint, which
prevents their decomposition as in the primal recursion. We then showed that
a natural Lagrangian relaxation of the dual recursion corresponds to inner ap-
proximations of the primal value function.

This relation suggests that, on the basis of the number of iterations, the
dual algorithm could converge faster than its dual relaxation, and therefore
faster than the backwards primal inner approximations, which should be further
investigated.

A Convex analysis

A (convex) polyhedron can be defined as the intersection of a finite number of
half-spaces. A polyhedral function is a function whose epigraph is a polyhedron.

Theorem 13 (Minkowski-Weyl’s theorem for polyhedra, see [Zie12, 1.2] or [Fuk16,
Thm 3.9]). For P ⊂ Rd, the following statements are equivalent :

1. There exist (ai)i∈[q] ∈ (Rd)q and (bi)i∈Rq such that P :=
{
x ∈ Rd | a⊤i x ≤

bi,∀i ∈ [q]
}
.

18

2. There exist finite families of vectors vi and rj in Rd such that P =
Conv(v1, . . . , vs) + Cone(r1, . . . , rt)

In particular, P is a polyhedron if and only if it satisfies one of these statements.

Definition 14. V and H representation of polyhedral functions. TODO: look-up
reference.

We do not need nor use minimality of representation.

A.1 Properties of the Fenchel transform

Definition 15. The Fenchel transform of a function f : Rn → R is f⋆(π) :=
supx∈Rn π⊤x− f(x).

Proposition 16 (Properties of the Fenchel transform). � Any function f⋆

obtained by the Fenchel transform is convex.

� The Fenchel transform is monotonic decreasing: if f ≤ g, then f⋆ ≥ g⋆.

� For a closed, proper, convex function, [f⋆]
⋆
= f .

Moreover:

Proposition 17 (Conjugacy of max and convex hull). Let f and g be closed,
proper, convex functions in Rn. Then

[max(f, g)]
⋆
= f⋆▼g⋆ (47)

[f▼g]⋆ = max(f⋆, g⋆) (48)

In particular, this yields a natural correspondence between H-representations
and V-representations for the conjugate:

Corollary 18. If f is a polyhedral function given as a maximum of cuts,

f(x) = minθ θ

s.t. θ ≥ π⊤
j x+ bj ∀j,

then its conjugate is given by vertices of the epigraph:

f⋆(π) = minα≥0

∑
j αjbj

s.t.
∑

j αjπj = π∑
j αj = 1

A.2 Further conjugacy results

Proposition 19. Assume that D is a closed, proper, convex function. Then

B

†

x̂(D)(π0) = x̂⊤π0 − B(D⋆)(x̂). (49)

In particular, if D is conjugate to a closed, proper, convex function V , then

B

†

x̂(D)(π0) = x̂⊤π0 − B(V)(x̂). (50)

19

Proof. Recall that B

†

x̂(D) is an affine function; the linear term x̂⊤π0 is immediate

from (14). So we only need to prove that B

†

x̂(D)(0) = −B(D⋆)(x̂). It is natural
to introduce multipliers z and y, respectively, for the two constraints in (14),
yielding

inf
λ,π

E
[
λ⊤d+D(π)

]
− x̂⊤E[B⊤λ]

+ sup
y,z≥0

E
[
−(π +A⊤λ)⊤z

]
+ E

[
−(c+ T⊤λ)⊤y

] (51)

Simplifying, then interchanging inf and sup by strong duality:

B

†

x̂(D)(0) = inf
λ,π

sup
y,z≥0

−E[λ⊤Bx̂] + E
[
λ⊤d+D(π)

]
−E

[
π⊤z + λ⊤Az

]
− E

[
c⊤y + λ⊤Ty

] (52)

= sup
y,z≥0

inf
λ,π

−E
[
c⊤y

]
+ E

[
V ⋆(π)− π⊤z

]
−E

[
λ⊤(Az +Bx̂+ Ty − d)

] (53)

= sup
y,z≥0

−E
[
c⊤y

]
− E [D⋆(z)]

s.t. Az +Bx̂+ Ty = d

(54)

= −B(D⋆)(x̂).

Recalling that B‡ was defined so that B‡(V ⋆) = [B(V)]
⋆
, we see from defini-

tion 15 that B‡(D) = supx̂ B
†

x̂(D) for closed, proper, convex functions D.

B Linear Bellman operators

B.1 Abstract Linear Bellman operators

As a way of unifying equations (2) and (3), we introduce abstract Bellman
operators.

Formally speaking, an abstract Bellman operator B is a mapping of L(Rm, R̄)
to L(Rn, R̄), where L(Rm, R̄) is the set of extended real-valued functions on Rm.
An abstract linear Bellman operator is an abstract Bellman operator B that can
be written as

B(V) : x0 7→ inf
x,y

EP
[
c⊤y + V (x)

]
(55a)

s.t. A(x) + T (y) = D(x0) (55b)

x ≥ 0,y ≥ 0, (55c)

where A, D and T are affine operators from a space of random vectors
into Rd, and P a reference probability measure. To fix ideas, assume that the
reference probability measure is finitely supported (i.e., supp(ξ) = (ξj)j∈[|Ξ|]).
Then, the random variables x (resp. y) can be represented by vectors x⃗ =
(x(ξ1), . . . ,x(ξ|Ξ|) of length nx × |Ξ| concatenating the values of x for each
realization ξj of the uncertainty. The same goes for y,x and d. Accordingly,
the affine operators A, D and T can be represented by matrices MA, MD

and MT of adequate size, such that the constraint (55b) can be written as

20

MAx⃗+MT y⃗ =MDx0+ d⃗. Thus, an abstract linear Bellman operator, evaluated
at any x0, for a discrete reference probability, can be written as a standard linear
program:

B(V)(x0) := inf
x⃗,y⃗

|Ξ|∑
j=1

P(ξ = ξj)
[
c⊤y⃗j + V (x⃗j)

]
(56a)

s.t. MAx⃗+MT y⃗ = d⃗−MBx0 (56b)

x⃗ ≥ 0, y⃗ ≥ 0, (56c)

where, for ease of notation, x⃗j corresponds to the value taken by x for the
realization ξj of the uncertainty.

Remark 20 (Example of abstract linear Bellman operators). To make things
more concrete, note that if B is the linear Bellman operator associated with the
problem (1), we can see that MA, MB and MT are block-diagonal, representing
the fact that the constraints are independent for each realization of the uncer-
tainty. However, the dual Bellman operators appearing in Problems (3) are not
block-diagonal, as the problem are coupled through the expectation constraint,
in which case the matrices MA, MB and MT are not block-diagonal anymore,
but instead have a L-shaped structure, i.e.,

MA =

A⊤

t

(
ξ1
)

A⊤
t

(
ξ2
)

. . .

A⊤
t

(
ξ|Ξ|

)
P(ξ = ξ1)B

⊤
t

(
ξ1
)

P(ξ = ξ2)B
⊤
t

(
ξ2
)

. . . P(ξ = ξ|Ξ|)B
⊤
t

(
ξ|Ξ|

)

Proposition 21. Let B be an abstract linear Bellman operator associated with
a finitely supported reference distribution. Then, B is monotous, convexity pre-
serving and polyhedrality preserving, i.e.,

i) if V ≤W , then B(V) ≤ B(W),

ii) if V is convex, then B(V) is convex,

iii) if V is polyhedral, then B(V) is polyhedral.

Proof. Obvious from the matricial expression (56).

21

B.2 Expression of dual Bellman operators

[B(V)]
⋆
(π0) = sup

x0

π⊤
0 x0 − B(V)(x0) (57)

= sup
x0

π⊤
0 x0 − inf

x,y≥0
E
[
c⊤y + V (x)

]
s.t. Ax+Bx0 + Ty = d

(58)

= sup
x0

sup
x,y≥0

π⊤
0 x0 − E

[
c⊤y + V (x)

]
s.t. Ax+Bx0 + Ty = d

(59)

= sup
x0

sup
x,y≥0

π⊤
0 x0 − E

[
c⊤y + V (x)

]
+ inf

λ
E[λ⊤(d−Ax−Bx0 − Ty)]

(60)

= inf
λ

E
[
λ⊤d

]
+ sup

x0

sup
x,y≥0

E[−λ⊤(Ax+Bx0 + Ty)]

+ π⊤
0 x0 − E

[
c⊤y + V (x)

]
(61)

= inf
λ

E
[
λ⊤d

]
+ sup

x≥0
E[−λ⊤Ax− V (x)]

s.t. E[B⊤λ] = π0
c+ T⊤λ ≥ 0

(62)

= inf
λ,π

E
[
λ⊤d+ V ⋆(π)

]
s.t. E[B⊤λ] = π0

π +A⊤λ ≥ 0

c+ T⊤λ ≥ 0

(63)

by, in order:

1. The definition of Fenchel dual;

2. The definition of B(V);

3. Interchanging (− inf) to (sup−);

4. Introducing the Lagrange multiplier λ;

5. Strong duality to interchange inf and sup;

6. Eliminating x0 and y;

7. The definition of V ⋆

References

[BDZ17] Regan Baucke, Anthony Downward, and Golbon Zakeri. A determin-
istic algorithm for solving multistage stochastic programming prob-
lems. Optimization Online, pages 1–25, 2017.

[dCL23] Bernardo Freitas Paulo da Costa and Vincent Leclère. Dual sddp
for risk-averse multistage stochastic programs. Operations Research
Letters, 51(3):332–337, 2023.

22

[FL23] Maël Forcier and Vincent Leclere. Convergence of trajectory fol-
lowing dynamic programming algorithms for multistage stochastic
problems without finite support assumptions. Journal of Convex
Analysis, page to appear, 2023.

[Fuk16] Komei Fukuda. Lecture: Polyhedral computation, spring 2016. 2016.

[GSC23] Vincent Guigues, Alexander Shapiro, and Yi Cheng. Duality and
sensitivity analysis of multistage linear stochastic programs. Euro-
pean Journal of Operational Research, 308(2):752–767, 2023.

[GTW19] Angelos Georghiou, Angelos Tsoukalas, and Wolfram Wiesemann.
Robust dual dynamic programming. Operations Research, 67(3):813–
830, 2019.

[LCC+20] Vincent Leclère, Pierre Carpentier, Jean-Philippe Chancelier, Ar-
naud Lenoir, and François Pacaud. Exact converging bounds for
stochastic dual dynamic programming via fenchel duality. SIAM
Journal on Optimization, 30(2):1223–1250, 2020.

[PdMF13] Andy Philpott, Vitor de Matos, and Erlon Finardi. On solving mul-
tistage stochastic programs with coherent risk measures. Operations
Research, 61(4):957–970, 2013.

[PP91] Mario VF Pereira and Leontina MVG Pinto. Multi-stage stochastic
optimization applied to energy planning. Mathematical programming,
52:359–375, 1991.

[Zie12] Günter M. Ziegler. Lectures on polytopes, volume 152. Springer
Science & Business Media, 2012.

23

	Introduction
	Inner and outer approximations of the value functions
	Outer updates and the SDDP algorithm
	Primal inner approximation schemes
	Algorithms using inner and outer bounds

	Inner approximation through duality
	Inner approximation through duality
	Lagrangian relaxation of dual problem
	Interpreting SIDP as a dual Lagrangian relaxation
	Relatively complete recourse for the dual
	State bounds and Lipschitz regularization

	The risk-averse setting
	The AV@R case
	Parametric risk measures

	Periodic setting
	Lagrangian relaxation

	Conclusion
	Convex analysis
	Properties of the Fenchel transform
	Further conjugacy results

	Linear Bellman operators
	Abstract Linear Bellman operators
	Expression of dual Bellman operators

